### V 1.03

# HARDWARE MANUAL



# **TMCM-1630**

1-Axis BLDC Controller / Driver plug-in module 10A / 48V DC RS232 / CAN or RS485 / USB

TRINAMIC Motion Control GmbH & Co. KG Hamburg, Germany





# **Table of contents**

| 1  | 1 Life support policy                          | 3  |
|----|------------------------------------------------|----|
| 2  |                                                |    |
| 3  |                                                |    |
| 4  |                                                |    |
| Ċ  | 4.1 Dimensions of the module                   |    |
| 5  | 5 Connectors                                   |    |
| _  | 5.1 Motor and power connector                  | -  |
|    | 5.1.1 Power supply requirements                |    |
|    | 5.2 Communication, GPIO, and encoder connector |    |
|    | 5.2.1 Reset the module to factory defaults     | 10 |
|    | 5.2.2 Inputs                                   | 11 |
|    | 5.2.3 Open drain outputs                       | 12 |
|    | 5.2.4 Encoder                                  |    |
| 6  | 6 LEDs                                         | 14 |
| 7  | 7 Operational ratings                          | 15 |
| 8  |                                                |    |
|    | 8.1 System architecture                        | 16 |
|    | 8.1.1 Microcontroller                          | 16 |
|    | 8.1.2 TMC603A pre-driver                       | 16 |
|    | 8.1.3 hallFXTM - hall sensor feedback          | 17 |
| 9  | 9 Revision history                             | 18 |
|    | 9.1 Document revision                          | 18 |
|    | 9.2 Hardware revision                          | 18 |
| 10 | 10 References                                  | 18 |

# 1 Life support policy

TRINAMIC Motion Control GmbH & Co. KG does not authorize or warrant any of its products for use in life support systems, without the specific written consent of TRINAMIC Motion Control GmbH & Co. KG.

Life support systems are equipment intended to support or sustain life, and whose failure to perform, when properly used in accordance with instructions provided, can be reasonably expected to result in personal injury or death.

#### © TRINAMIC Motion Control GmbH & Co. KG 2012

Information given in this data sheet is believed to be accurate and reliable. However neither responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties, which may result from its use.

Specifications are subject to change without notice.



### 2 Features

The TMCM-1630 is a highly integrated single axis BLDC servo controller module with several interface-options. The highly integrated module (size: 50mm x 92.5 mm) has been designed in order to be plugged onto a baseboard. It integrates velocity and position control and offers hall sensor and incremental encoder (a/b/n) inputs. The module can be used in stand alone operation or remote controlled.

#### **Applications**

• Demanding single and multi-axis BLDC motor solutions

#### **Electrical data**

- Supply voltage: +24V DC or +48V DC nominal (+12... +55V DC max.)
- Motor current: up to 10A RMS (programmable) peak

#### Integrated motion controller

 High performance ARM Cortex<sup>™</sup>-M3 microcontroller for system control and communication protocol handling

#### Integrated motor driver

- High performance integrated pre-driver (TMC603A)
- Support for sensorless back EMF commutation (hall FX™)
- High-efficient operation, low power dissipation (MOSFETs with low R<sub>DS(ON)</sub>)
- Dynamic current control
- Integrated protection
- On the fly alteration of motion parameters (e.g. position, velocity, acceleration)

#### **Interfaces**

- Two standard assembly options:
  - RS232 and CAN (2.0B up to 1Mbit/s)
  - RS485 and USB (High-speed 12Mbit/s)
- 2 analogue and 2 digital inputs
- 3 open drain outputs

#### Motor type

- Block commutated 3 phase BLDC motors with optional hall sensors / optional encoder
- Motor power from a few Watts to nearly 500W
- Motor velocity up to 100,000 RPM (electrical field)
- Common supply voltages of 12V DC, 24V DC, 36V DC and 48V DC supported
- Coil current up to 10A peak

#### Software

- TMCL™ stand-alone operation or remote controlled operation
- TMCL™ program memory (non volatile) for up to 2048 TMCL™ commands
- TMCL™ PC-based application development software TMCL-IDE and TMCL-BLDC available for free
- CANopen ready: CiA 301 + CiA 402 (homing mode, profile position mode and velocity mode) under development

#### Other

- Two double-row 2.54mm connectors
- ROHS compliant
- Size: 50x92.5mm²

Please see separate TMCL™ and CANopen Firmware Manual (in preparation) for additional information

# 3 Order codes

| Order code           | Description                                                                                                       | Dimensions [mm] |
|----------------------|-------------------------------------------------------------------------------------------------------------------|-----------------|
| TMCM-1630-4U-TMCL    | O-4U-TMCL Single axis BLDC plug-in servo controller module with RS485 interface, USB interface and TMCL™ firmware |                 |
| TMCM-1630-2C-CANopen | Single axis BLDC plug-in servo controller module with RS232 interface, CAN interface, and CANopen firmware        | 50 x 92.5 x 14* |
| TMCM-1630-2C-TMCL    | Single axis BLDC plug-in servo controller module with RS232 interface, CAN interface, and TMCLTM firmware         | 50 x 92.5 x 14* |

<sup>\*</sup> Module height (14mm) including connectors

Table 3.1: Order codes

# 4 Mechanical and electrical interfacing

# 4.1 Dimensions of the module

The module has a size of 92.5mm x 50mm. It offers four mounting holes (diameter: 3.2mm). Maximum overall height of the module including connectors: approx. 14mm.

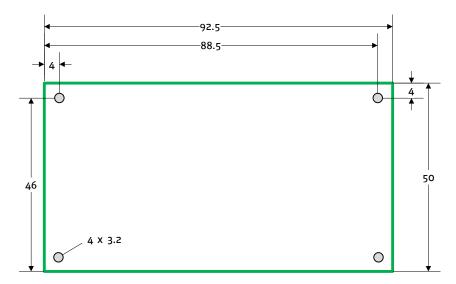



Figure 4.1: Size of module

### 5 Connectors

The module offers two double row 2.54mm pitch standard connectors, one at each end of the board.

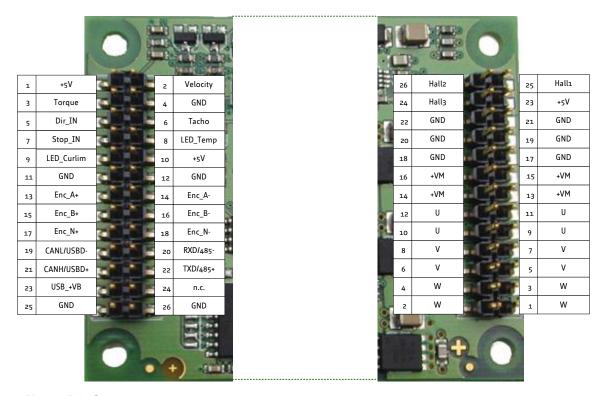



Figure 5.1: Connectors

| Domain            | Connector type                          | Mating connector type                   |
|-------------------|-----------------------------------------|-----------------------------------------|
| I/Os, interfaces, | TSM-113-03-L-DV-K-A, 2x13 poles, double | SSW, SSQ, SSM, BSW, ESW, ESQ, BCS, SLW, |
| encoder           | row, 2.54mm pitch, SMD vertical, Samtec | CES, HLE , IDSS and IDSD series, Samtec |
| Power, hallFX™,   | TSM-113-03-L-DV-K-A, 2x13 poles, double | SSW, SSQ, SSM, BSW, ESW, ESQ, BCS, SLW, |
| motor             | row, 2.54mm pitch, SMD vertical, Samtec | CES, HLE , IDSS and IDSD series, Samtec |

Table 5.1: Connector type and mating connector of the TMCM-1630

Since the two connectors of the TMCM-1630 are similar be careful not to plug-in the module the other way round. Also, be sure to place the connectors exactly to their mating opponents. Not following these guidelines might cause permanent damage to the module when turning power supply on.

Especially for higher motor currents the module offers an assembly option for a detachable screw connector which will be assembled on the top side of the board. The 5 pin connector offers power supply (+VM and GND) and motor coil (U, V, W) connections:

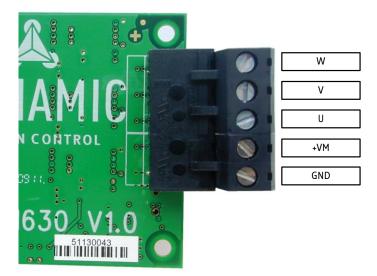



Figure 5.2: Additional detachable screw connector as assembly option

The signals are connected 1:1 to the signals with the same label on the two-row motor and power connector header on the bottom side of the board.

| Connector type assembled on board          | Mating connector type                                  |
|--------------------------------------------|--------------------------------------------------------|
| RIA AKL 330-05 5pin, 5.0mm pitch connector | 1x RIA AKL 349-05 5pin, 5.0mm pitch screw connector    |
|                                            | <u>or</u>                                              |
|                                            | 1x RIA AKL 349-02 2pin, 5.0mm pitch screw connector    |
|                                            | for power supply (+VM and GND) and                     |
|                                            | 1x RIA AKL 349-03 3pin 5.0mm pitch screw connector for |
|                                            | motor coil connection (U, V, W)                        |

Table 5.2: Connector type and mating connector of the detachable screw connector

### **5.1** Motor and power connector

A double row 26 pin header with 2.54mm pitch is used for connecting all motor related signals and module power supply.

| Pin | Label | Description                  | Pin | Label  | Description                  |                             |
|-----|-------|------------------------------|-----|--------|------------------------------|-----------------------------|
| 1   | W     | Motor coil W                 | 2   | W      | Motor coil W                 |                             |
| 3   | W     | Motor coil W                 | 4   | W      | Motor coil W                 |                             |
| 5   | ٧     | Motor coil V                 | 6   | V      | Motor coil V                 |                             |
| 7   | ٧     | Motor coil V                 | 8   | V      | Motor coil V                 |                             |
| 9   | U     | Motor coil U                 | 10  | U      | Motor coil U                 |                             |
| 11  | U     | Motor coil U                 | 12  | U      | Motor coil U                 |                             |
| 13  | VM    | Module driver supply voltage | 14  | VM     | Module driver supply voltage |                             |
| 15  | VM    | Module driver supply voltage | 16  | VM     | Module driver supply voltage |                             |
| 17  | GND   | Module ground (power supply  | 18  | 8 GND  | Module ground (power supply  |                             |
| 17  |       | and signal ground)           |     |        | and signal ground)           |                             |
| 19  | GND   | Module ground (power supply  | 20  | 20 G   | 0 GND                        | Module ground (power supply |
| 1/  |       | and signal ground)           |     |        | and signal ground)           |                             |
| 21  | GND   | Module ground (power supply  | 22  | 22 GND | Module ground (power supply  |                             |
|     |       | and signal ground)           |     |        | and signal ground)           |                             |
|     | +5V   | +5V output (100mA max.) for  |     |        |                              |                             |
| 23  |       | encoder and/or hall sensor   | 24  | 24     | HALL3                        | Hall sensor 3 signal input  |
|     |       | supply                       |     |        |                              |                             |
| 25  | HALL1 | Hall sensor 1 signal input   | 26  | HALL2  | Hall sensor 2 signal input   |                             |

Table 5.3: Connector for motor related signals and power supply

### 5.1.1 Power supply requirements

The power supply should be designed in a way, that it supplies the nominal motor voltage at the desired maximum motor current. In no case shall the supply voltage exceed the upper or lower voltage limits. To be able to cope with high voltage spikes which might be caused by energy fed back from the motor during deceleration, a sufficient power supply capacitor should be added on the baseboard closed to the module. Depending on the motor and expected motor current please use a 4700µF or larger capacitor with suitable voltage rating. Additionally, a suitable suppressor (zener-) diode might be useful.

# 5.2 Communication, GPIO, and encoder connector

A double row 26 pin header with 2.54mm pitch is used for connecting all communication and GPIO signals.

| Pin | Label      | Description                                                                                                                                                                      | Pin | Label        | Description                                                                                                                                         |
|-----|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | +5V        | 5V analog reference as used by<br>the internal DAC.<br>Max. load 0.5mA                                                                                                           | 2   | Velocity     | Used for velocity control in stand alone operation by supplying external 0 - 10V signal                                                             |
| 3   | Torque     | Used for max. motor current / torque control in stand alone operation by supplying external 0-10V signal                                                                         | 4   | GND          | Module ground (power supply and signal ground)                                                                                                      |
| 5   | Dir_IN     | 5V TTL input. Tie to GND to inverse motor direction, leave open or tie to 5V otherwise.                                                                                          | 6   | Tacho        | This pin outputs a tacho impulse, i.e. toggles on each hall sensor change                                                                           |
| 7   | Stop_IN    | Emergency stop. Tie this pin to GND to stop the motor (same as the <i>Motor Off</i> switch on PCB). The motor can be restarted via the interface, or by cycling the power supply | 8   | LED-Temp     | 5V TTL output: Toggling with<br>3Hz when temperature pre-<br>warning threshold is exceeded,<br>high when module shut down<br>due to overtemperature |
| 9   | LED-Curlim | High, when module goes into current limiting mode                                                                                                                                | 10  | +5V          | 5V output as reference for external purpose                                                                                                         |
| 11  | GND        | GND reference                                                                                                                                                                    | 12  | GND          | GND reference                                                                                                                                       |
| 13  | Enc_A+     | Encoder A+ channel                                                                                                                                                               | 14  | Enc_A-       | Encoder A- channel                                                                                                                                  |
| 15  | Enc_B+     | Encoder B+ channel                                                                                                                                                               | 16  | Enc_B-       | Encoder B- channel                                                                                                                                  |
| 17  | Enc_N+     | Encoder N+ channel                                                                                                                                                               | 18  | Enc_N-       | Encoder N- channel                                                                                                                                  |
| 19  | CANL/USBD- | CAN low /<br>USB D- bus line                                                                                                                                                     | 20  | RXD/<br>485- | RXD signal for RS232 / inverting signal for RS485                                                                                                   |
| 21  | CANH/USBD+ | CAN high /<br>USB D+ bus line                                                                                                                                                    | 22  | TXD/<br>485+ | TXD signal for RS232 / non inverting signal for RS485                                                                                               |
| 23  | USB_+VB    | Use to detect availability of attached host system (e.g. PC)                                                                                                                     | 24  | n.c.         |                                                                                                                                                     |
| 25  | GND        | GND reference                                                                                                                                                                    | 26  | GND          | GND reference                                                                                                                                       |

Table 5.4: Connector for communication and GPIOs

### 5.2.1 Reset the module to factory defaults

| Interface | Description                                         |  |  |  |  |
|-----------|-----------------------------------------------------|--|--|--|--|
| RS232     | RS232 Short RxD and TxD for resetting the module.   |  |  |  |  |
| USB       | Use your USB interface for resetting the module     |  |  |  |  |
|           | with the functions of TMCL-IDE. Please refer to the |  |  |  |  |
|           | TMCL™ Firmware Manual.                              |  |  |  |  |

Table 5.5: Reset the module to factory defaults

# **5.2.2** Inputs

The TMCM-1630 offers two analogue and two digital inputs.

| Pin | Label             | analogue/digital | Description                                                                                                                         |  |  |
|-----|-------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 2   | Velocity          | analogue         | Used for velocity control in stand alone operation by supplying external 0 - 10V signal                                             |  |  |
| 3   | 3 Torque analogue |                  | Used for max. motor current / torque control in stand alone operation by supplying external 0 – 10V signal                          |  |  |
| 5   | Dir_IN            | digital          | Direction input (+5V TTL compatible). Tie to GND to inverse motor direction, leave open or tie to +5V otherwise.                    |  |  |
| 7   | Stop_IN           | digital          | Emergency stop. Tie this pin to GND to stop the motor. The motor can be restarted via the interface, or by cycling the power supply |  |  |

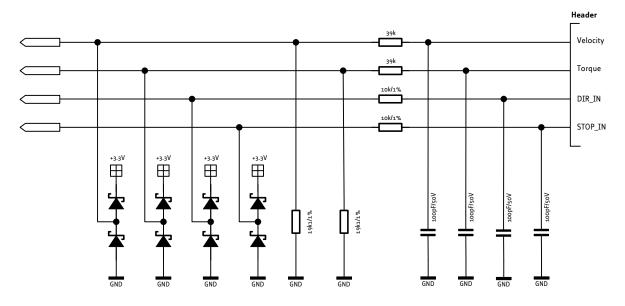



Figure 5.3: Internal circuit of analogue and digital inputs

### 5.2.3 Open drain outputs

The module offers three open drain outputs. Two of them (*LED-Temp* and *LED-Curlim*) power on-board LEDs, also. Please refer to paragraph 6 for more information about the LEDs.

| Pin | Label      | Description                                                        |
|-----|------------|--------------------------------------------------------------------|
| 6   | Tacho      | This pin outputs a tacho impulse, i.e. toggles on each hall sensor |
| O   | Tacilo     | change                                                             |
|     |            | +5V TTL output: Toggling with 3Hz when temperature pre-warning     |
| 8   | LED-Temp   | threshold is exceeded, low when module shut down due to            |
|     |            | overtemperature                                                    |
| 9   | LED-Curlim | Low when module goes into current limiting mode                    |

Table 5.6: Outputs of the TMCM-1630

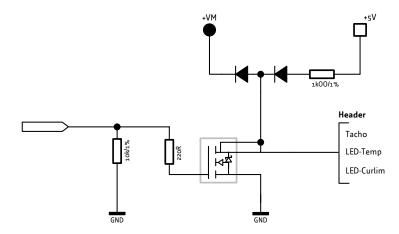



Figure 5.4: Internal circuit of the outputs

### 5.2.4 Encoder

| Pin       | Label  | Description        |
|-----------|--------|--------------------|
| 13        | Enc_A+ | Encoder A+ channel |
| 14        | Enc_A- | Encoder A- channel |
| 15 Enc_B+ |        | Encoder B+ channel |
| 16        | Enc_B- | Encoder B- channel |
| 17 Enc_N+ |        | Encoder N+ channel |
| 18        | Enc N- | Encoder N- channel |

Table 5.7: Encoder channels of TMCM-1630

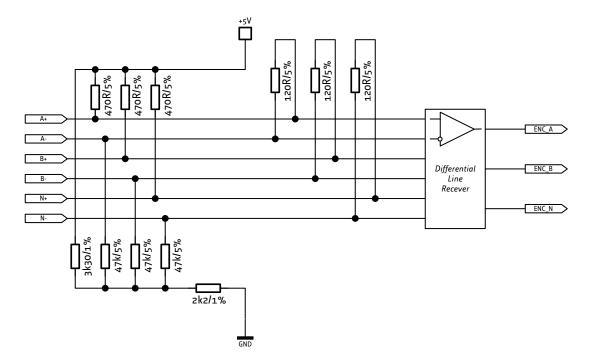



Figure 5.5: Internal circuit of the encoder channels

### 6 LEDs

The TMCM-1630 module has 4 on-board LEDs for power, error indication, current overload, and temperature warning. The LEDs are placed on the back of the module. You can plug the module on its baseboard and take a look at the LEDs on the backside of the module.

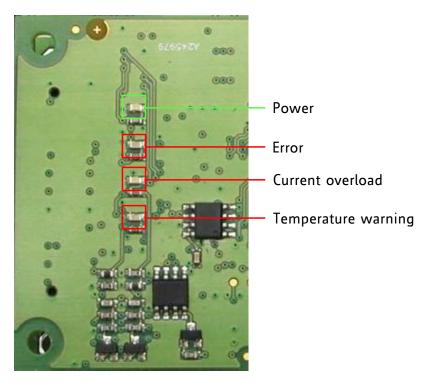



Figure 6.1: On-board LEDs

| LED                 | Color | Description  |                                                                                                                                                                                                |  |  |  |
|---------------------|-------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Power               | green | LED is ON, i | f the on-board +5V are available                                                                                                                                                               |  |  |  |
| Error               | red   | ON in case   | of error                                                                                                                                                                                       |  |  |  |
| Current overload    | Blink |              | The current limit LED blinks upon under voltage switch off                                                                                                                                     |  |  |  |
|                     | red   | ON/Flicker   | Motor PWM is reduced due to exceeding the set motor current limit                                                                                                                              |  |  |  |
|                     |       | Blink        | The power stage on the module has exceede a critical temperature of 100°C (Pre-warning)                                                                                                        |  |  |  |
| Temperature warning | red   | ON           | The power stage on the module has exceeded the critical temperature of 125°C. The motor becomes switched off, until temperature falls below 115°C. The measurement is correct to about +/-10°C |  |  |  |

Table 6.1: LEDs signals and their meaning

# 7 Operational ratings

The operational ratings show the intended/the characteristic range for the values and should be used as design values. An operation within the limiting values is possible, but shall not be used for extended periods, because the unit life time may be shortened. In no case shall the limiting values be exceeded.

| Symbol             | Parameter                                                                                                                 | Min  | Тур    | Max                      | Unit |
|--------------------|---------------------------------------------------------------------------------------------------------------------------|------|--------|--------------------------|------|
| V <sub>S</sub>     | Power supply voltage for operation                                                                                        | 12   | 24, 48 | 55                       | V    |
| $I_{S}$            | Power supply current                                                                                                      | 0.04 |        | $\mathbf{I}_{MOT}$       | Α    |
| $P_{\mathtt{ID}}$  | Module idle power consumption                                                                                             |      | 1.2    |                          | W    |
| V <sub>5</sub>     | 5 Volt (+-8%) output external load (hall sensors plus other load)                                                         |      |        | 100                      | mA   |
| ${ m I}_{ m MC}$   | Continuous Motor current at $V_{MF}$                                                                                      |      | 0 - 8  | 10                       | Α    |
| $I_{MP}$           | Short time Motor current in acceleration periods                                                                          |      | 0 - 10 |                          | Α    |
| V <sub>I</sub>     | Logic input voltage on digital / hall sensor inputs                                                                       | -0.3 |        | V <sub>cc</sub> +<br>0.3 | V    |
| $I_0$              | Sink current on digital outputs (open-drain outputs)                                                                      |      |        | 1                        | Α    |
| $V_{\mathrm{IA}}$  | Analog input voltage                                                                                                      | -24  | 0 - 10 | 24                       | V    |
| $f_{\text{CHOP}}$  | Chopper frequency                                                                                                         |      | 20     |                          | kHz  |
| E <sub>x</sub>     | Exactness of voltage and current measurement                                                                              | -8   |        | +8                       | %    |
| T <sub>SL</sub>    | Motor output slope (U, V, W)                                                                                              |      | 100    |                          | ns   |
| T <sub>0</sub>     | Environment temperature operating                                                                                         | -25  |        | +70                      | °C   |
| T <sub>OF</sub>    | Environment temperature for operation at full specified current (air flow might required, depending upon motor / voltage) | -25  |        | +60                      | °C   |
| T <sub>board</sub> | Temperature of the module, as measured by the integrated sensor.                                                          |      | <100   | 125                      | °C   |

Table 7.1: Operational ratings

### 8 Functional description

In figure 8.1 the main parts of the TMCM-1630 module are shown. The module mainly consists of the Cortex<sup>TM</sup>-M3 CPU, TRINAMICs highly integrated TMC603 BLDC motor pre-driver, the MOSFET driver stage, different interfaces (depends up-on which option you have chosen), the inputs, and the outputs (open drain).

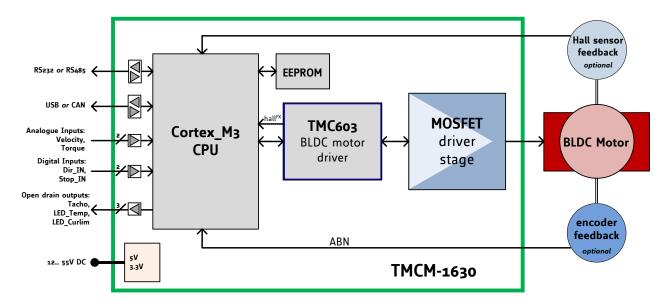



Figure 8.1: Main parts of the TMCM-1630

### 8.1 System architecture

The TMCM-1630 integrates a microcontroller with the TMCL™ Firmware or CANopen. The motion control real-time tasks are realized by the TMC603A.

#### 8.1.1 Microcontroller

On this module, the ARM Cortex-M3<sup>TM</sup> CPU 32-bit processor is used to run the TMCL<sup>TM</sup> operating system and to control the TMC603A. The flash memory of the microcontroller holds the TMCL<sup>TM</sup> operating system. The EEPROM memory is used to permanently store configuration data. The microcontroller runs the TMCL<sup>TM</sup> or CANopen operating system which makes it possible to execute commands that are sent to the module from the host via the interface. The microcontroller interprets the commands and controls the TMC603A.

The TMCL™ operating system can be updated via the host interface. Please use the latest version of the TMCL-IDE to do this.

### 8.1.2 TMC603A pre-driver

The TMC603A is a three phase motor driver for highly compact and energy efficient drive solutions. It contains all power and analog circuitry required for a high performance BLDC motor system. The TMC603A is designed to provide the frontend for a microcontroller doing motor commutation and control algorithms. Integrated hall FX<sup>TM</sup> (pat.) allows for sensorless commutation. Protection and diagnostic features as well as a step down switching regulator reduce system cost and increase reliability.

#### 8.1.3 hallFX<sup>™</sup> - hall sensor feedback

hall FX<sup>TM</sup> provides emulated hall sensor signals. The emulated hall sensor signals are available without a phase shift and there is no error-prone PLL necessary, like with many other systems, nor is the knowledge of special motor parameters required. Since it is based on the motors' back-EMF, a minimum motor velocity is required to get a valid signal. Therefore, the motor needs to be started without feedback, until the velocity is high enough to generate a reliable hall FX<sup>TM</sup> signal.

Please refer to the TMCM-1630 Firmware Manual for further information about using hallFX™.

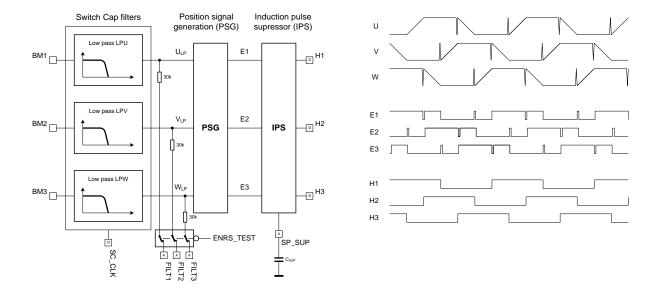



Figure 8.2: hallFX™ block diagram and timing

A switched capacitor filter for each coil supplies the measured effective coil voltages. Its filter frequency can be adapted to the chopper frequency and the desired maximum motor velocity. An induction pulse suppressor unit gates the commutation spikes which result from the inductive behavior of the motor coils after switching off the current. The gating time can be adapted by an external capacitor to fit the motor inductivity and its (maximum) velocity.

# 9 Revision history

### 9.1 Document revision

| Version | Date        | Author | Description                                                       |
|---------|-------------|--------|-------------------------------------------------------------------|
| 1.00    | 2011-JUN-02 | SD     | Initial version                                                   |
| 1.01    | 2011-NOV-07 | SD     | Minor changes                                                     |
| 1.02    | 2012-JUN-11 | SD     | Hall signal description (connector) corrected.                    |
| 1.03    | 2012-JUL-03 | GE     | Assembly option for 5pin detachable screw connector for power and |
|         |             |        | motor coil connection on top side of module added.                |

Table 9.1: Document revision

### 9.2 Hardware revision

| Version | Date        | Description   |
|---------|-------------|---------------|
| V1.0    | 2011-JAN-19 | First version |
|         |             |               |

Table 9.2: Hardware revision

# **10 References**

[TMCM-1630] TMCM-1630 TMCL™ Firmware Manual

[BB-1630] BB-1630 Hardware Manual [TMCL-IDE] TMCL-IDE User Manual [TMCL-BLDC] TMCL-BLDC User Manual

Please refer to www.trinamic.com.